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TECHNICAL NOTE NO. 1833

NOTES ON THE FOUNDATTONS OF THE THEORY OF SMALL
DISPLACEMENTS OF ORTHOTROPIC SHELIS

By F. B, Hildebrand, E, Reissner, and G. B. Thomas
SUMMARY

A survey hase been made of various systems of equations which have
been glven in the literature for’ the analysis of emall deflections of
thin elastic shells., In this survey the results, previously known for
igsotroplic shells, have been reformmlated for shells which are orthotropic
to the extent that the normal to the middle surface of the shell may be
a preferred elastlc axis,

A new system of equations has been derived for the analysis of
shells, which includes the effects of itrensverse shear ani normal
stresses, The assumed orthotropy of the shell facilitates the
identification of the separate effects of the ordinarily neglected
transverse stresses.

INTRODUCTION

In thls report various msthods are described of obtalning systems
of equations which may be considered as forming the basis of a theory
of small displacements of elastic plates and shslls., In all cases
one begins with the governing equations in the three—dimensional
theory of elasticlity and an attempt 1s made to reduce this system of
equations, Involving three independent space varisbles, to a new
system Involving only two space varisbles. These two variables are
most conveniently teken as coordinates on the middle surface of the
plate or shell,

Numerous reductions of this sort have been carried out in the past
by different workers 1n the field of elasticity. Care will be taken to
point out in the analysis the connectlon between the developments herein
presented and the results of earlier smtudies.

One of the points of interest 1s the study of the effect of
trangverse shear deformation on the bending of shells. In the case
of the flat plate it has been shown, by methods which differ somewhat
from those used here (references 1 and 2), that inclusion of this
effect resolves in g natural way well-known difficulties with regard
%o the boundary conditions which may be prescribed along the edges of
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a plate., * It—1s to be expected that corresponding difficulties in the
analysis of shells may be removed in an analogous vay, and the pressat
report-—ehowe that this l1s indeed the case. The practical significance
of-this analysie with reference to stress—concentration problems has
been established in the earlier work on plates,

Attention is herein restricted to static problems involving smell
deformations, excluding for the present the study of vibrations,. elastic
stability, and finite deformations. It will be apparent, however, that
mich of the present. analysis can be extended to the considerstion of
these problems.

In order that the separate effects of the transverse stresses may
be segregated, the plates and shells are assumed to consist of material
which mey be orthotropic to the extent that the normsl to the middle
gurface is a preferred. elastic axis.

This work was conducted at the Messachusetts Institute of Technology
under the sponsorshlp and wlth the financial assistance of the National
Advisory Committee for Aeronsutics.

SYMBOLS
£1, &p coordinates in middle surface of shell
t coordinate normal to middle surface
%, Ts, 0 unit vectors in directions of §;, &, ¢
Ay, Apy @, o par:ﬁgt?§§)in linear element (equetions (2)
Ry, Rp principal radii of curvature
i} - diasplacement vector Cﬁ = Ui%i + Ué%é + Wﬁ)
F body—Fforce vector (f = F1%; + Fobp + Fgﬁ)

€1, €0, € components of direct strain

710 71§, 72§ componente of ghearing strain

gy, Op, O componsnts of dlrect stress
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Tle_, Tlg-’ Teg
v, Vg
E, Bt

¢, o

Y]

¥

2

k-1

=]

Nl: N2
M, M

P115 Pips Po1s Foo
S1s Sps Ty Tp

A, B

ul’ ul! R ulli

1 tt
Up, Up', Up
w, wt, w't

&, &', e"l
BO, g, pM

components- of shearing stress
Poigson's ratios
Young's moduli

ghear moduli

pz;ra.meter defined by ¥V = E v
Ee 'L
v¢E
parameter defined by vy¥* = L Sl
(1 —-V)Et
parameter defined by E = —-—l——_-l)——é- E
1-v~2

potential energy
gtrain energy per unit volume
efPective external force per unit area;
applied to middle surface (';E = Pty + Doty + qﬁ)

effectlive external moment per unit area;
applied to mliddle surface (B = mpTy — mty)

gtreas—resultant vectors
(Fy =M%y + Mgfp + qF M = Wpy¥y + Mpg¥p + Q)
stress—couple vectors

(Ml = Moty — Myytp; My = Moty — sz*z)

higher—order stress resultents defined by
equations (T3)

auxiliary stress resultants defined by
equations (79)

displacement functlong defined by
equations (69)

strain functions defined by equations (84),
"with eppropriate subscripts
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70, Ky T gtrain functions defined by equations (46)
and (48b), with appropriste subscripts

al, at, at't* auxiliary perameters defined by equations (86),
: with appropriete subscripts

THREE-DIMENSIONAL STRESS AND STRATN IN CURVILINEAR COORDINATES

In this section there sre collected Ffor convenient refsrence
certain known basic formulas pertaining to the analysis of stress and
gtrain in terms of orthogonal curvilinesr coordinates.

THE COORDINATE SYSTEM

The position of any point in a plate or shell may be specified by
three coordinates §&q, &p, {, vhere &7 and &, specify position on

the middle surface, while { measures the distance, along the outward
normel, from the middle surface to the point, In order that the
coordinste curves be orthogonal, it is required that ithe §l—

and & _—curves be the lines of curvature on the middle surface & = O.

The unit normal vector at a point of the middle surface is denoted
by T and the unit tengent vectors to the &;— and &o—curves are

denoted by %1 and Eé, respectively. The coordinates §1 and §2

are to be chosen in such a way that the gystem is right~handed, in the
gense that T7 1is rotated into To by & right—handed rotation

about T,

If there is written for the positlon vector to & point in space
R(1, to, ) = F(t1, 2) + LR(t1, to) (1)

where T is the position vector to a point on the middle surface, the
linear element is of the form

2 < dR-aR = A2 48,2 + 8,2 at? + at® (2)

The coefficients in the linear element are given by

(%)

R
(3)
2 + %)

it

A

Ao
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where Rl
surface and

2 _9oF oF 2 9T OF
T “2" = 3t, o,
1 __.1 90 oF _.l_,_.Abg_.B_r_
Ri ~ ;2 3¢, of; R 2 3t dt,
There 1s also the relation
_=E X%- =—l-§i_'—- .a_-.f_
1 2 T3y 3 X %,

- The further relations

&5 -6

and R, are the principal radil of curvature of the middle

4 (&)

(5)

(6)

which are special cases of formulas obtained by Malnardl and Codazzi,

are of frequent use.
equations (6) imply the truth of the equations

Al LN %, t)]
of L.ml<l+Rl> —Bgzé+g)
>3
2 £ _ 9
a§_< PE>J=E§<1+,'RI>

COMPONENTS OF STRAIN

It 1s noted, for later reference, that

(7

) If the displacement vector U is written in the form

YU = Ultl + U2t2 + W-Il

(8)
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the six components of dinfinitesimal strain are expressed in terms of

the components of U by the equations

use cq,‘a-('l\ -
r
_ 1 (U Tpde, . W
e o (L + Q/Rl)\agl G5y, T Rl)
1 (3Up Uy dup.
€ = d.g(l i 5/32)\552 +_.&1. agl i+ Qo RE) e (98-)
W
5; = -é-f ]
o = wl+t/f) 3 [ T Ll +t/R) Ui ] _
ap(1 + ¢/Ry) 3§1L°°2(1 ¥ t/R)|  an(t + t/Rp) dtplag(T + L/Ry)
1 oW £ U .
“1(1 + ¢/Ry) 981 < R])ai;(l + §/Rl> > (9p)
oy = 1 o1 N _§Z>_i
28 T o + t/R0) 3L, * Rp/dL\1 + ‘:/R2
DIFFERENTTAL EQUATTONS OF EQUILIERIUM
If the body force per unit volume is denoted by tha. vector
F = Fytq + Fpty + R (10)

the six components of stress o1, 09, O, T125 T1Es and
the three equillibrium equations

ng miet satisfy
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a‘a“[ @+ §/Re)cl] J"l(l * ngl)"'l?]

+ QqCn %E [(1 + ¢ /Rl> (.‘L + ¢ /RE)T:LQ]
+ T1o St; [a,l<l + §/R1)] + Tlg (l + §/R2)

- a5 3& Exe(l + g/R2>] + mla.g(l + §/Rl)(l + g/RQ)Fl =0

At e -

+ aqan %[(l + §/R1>(1 + §/R2)1'2§]

+ T1p T Er.g(l + ﬁ/Rg)] + TQQ (l + §/Rl>

~ 0 -a-?;l}l(l + §/R_1)] + cr,lcz.a(l + 5&1)(1 + §/‘R2)F2 =0

»

ajan %f[(l + Q/RI)(l + Q/RQ)GQ + ng[a.g(l + §/32)-rl§]
5—2—2—%1(1 + Q/Pl)TEQ' - E’%@(l + §/R2>0‘l

— -JR'—:g(l 3 g/R]_)O'e + ccla2(1+ §/Rl)<l + g/Re)Fg =Q J

r(ll)
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If 1t is required that the normal to the middle surface be an
axis of elastlc symmetry and 1f lsotropy is assumed in elements of
the middle surface, the stress-strain equations may be written in

the form

€1

€

GQ...

-

o —vop ¢

ST w - e
_O' v(0'1+0'2)
Eg _E_ﬁﬁg_____J
r1e = 42
T1¢
7yt = a%- >
.

(12) .

(13)

If equations (12) are solved for 07 and o0, the resulte can be

expressed in the form

o1

B VCE
= ———(€7 4+ y + R
1 -2\t 62) (1 -vE ¢
E VgE
———(ep + ve1) +

0o

Il

B

(1 - V)Eg %t

(1%)

-
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where

E
% = E¢ _ [Gg . - v§v) (61 + €2)] (1ka)
vg i) By

(1 —-‘V)Ec

If there are introduced the symbols

v
x_._Lt E
l-—vE;

(1 — v2)Eg (25)

1l- 2“);‘\!*

o </
&

i

.- equations (14) and (1ka) may also be written in the form

Q
[
il

R RS

2(52 + Vel) + v*cg (16)

A4

1—-v

0'; = N _E_*v2 l}; + y¥ (el + 52)]

An equivalent form of equations (14) and (1lba), which is more
convenient for some purposes, is obtained in terms of the parameters

.- - (17)
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With this notation equations (14} and (14a) lead to explicit
expressions in terms of the strains in the form

a)
0 = l:E-‘VQ _(1—'172)61 + (v +32)52 + V;(l + ”)egj %
(18)
Ef - e 6 o) '
62=1_v2_1—v €0 + Y + v el+‘u§(]_+-p)€§.~
v
Uﬁ:ﬁ[f'g——\l'el*e?)*%eﬁ] ‘ (19)

It is noted that in the limiting orthotropic case for which

Vg = 0 (20)

there follows V = O, E = E, and equations (18) and (19) become

o1 =< _E_: v2(el + Vep) ]
%2 =7 ? V2(€2 +vey) - (21)
org = Eeg ]
Further, in the isotropic case for which
Vg =V
(22)

b
v

]

5|
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there follows

Eigotropic = e i)'(_lv_ 7 E
‘Vigotropic = V ) )
and equations (18) and (19) becoms
I ) Yy :(l —Vley + V(e2 + <) |
2T +V)E(:1—2V)L(l—v)'52 +V(el-+ ec): i (2k)

THE MINIMUM PRINCIPLE FOR THE DISPFLACEMENTS; PRINCIPLE OF

MINTMUM POTENTIAT. ENERGY

If no body forces are acting and 1f all boundary conditions are
gstress conditions, the principle sets forth that among all possible
gtates of strain the state which actually exists i1s that one for which
the potential energy = takes on its minimm value. (See, for example,
reference 3, page 281,) The potential energy 7 of the load system is
given by the surface integral :

7, =—ff§s-ﬁds (25a)

where ;Es is the surface—stress vector, while the energy Tgtrain 18
glven by the volume integral

Tgtrain '_‘fffP(Gl: €25 Sts Y105 71Es 72;) av (25b)
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where P is the straln energy per unit volume which is to be expressed
in terms of the displacements Uy, Up, and W by use of equations (9).

The function P 1s determinsd by the relations

oP oP oP '1'.
—_— = 0’1 — = 0'2 —— = O’g
d¢y o€y det
. - (26)
oP  _ . 3P oP
—— 12 = Tlg —— T2§
712 973t 728
and, for the orthotropic materlal considered here, takes the form
Jih 2 2 2
P = %{l — v2(€l + €2 + 2V€le'2) + G'712
EX_I. x 2 G 2 2 27a)
+1_v2[§'+v (El"' 62)] + Ge(716 + 7ot (27a
Equation (27a) can also be written in the form
i —2 2 A 2 -
P=% 1—v2':<1-V)<El +€25+%-(1—V)e§ +2<v+v)51€2
+—-2v§ (1 +v) (Gl + 62)E§]+ G-7122 + G;(‘)‘lgz +—72§2>} (27b)

The requirement that P be a positive definite quantity leads to
the followlng restricilon on the elastlc constants

B (1 - V) —2Ev§2>0 i (28a)
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and hence the restrictions

’
1l-v
v < 5 L
(28p)
* < X
v <2v
-

on the parameters V and v¥ or, equivalently, to the requirement
that E and E* be positive. With the definitions of equations (25a)
end (25b), the minimal condition is of the form

B = 8(;1 + “strain) =0 (29)

%

THE MINIMUM PRINCIPIE FOR THE STRESSES; CASTIGLIANO!'S THHOREM

A .OF LEAST WORK

If linear stress—strain relations and small strains are assumed, in
accordence with eguations (9), and if the surface stresses are prescribed
over the faces of the shell or plate, while the displacements are
prescribed over the edge surfaces, the principle sets forth (see, for
example, reference 3, page 286) that among all staticelly correct states
of stress the true state is determined by the condlition that the
complementary energy =, be & minimum

51(0 =0 (30)

The complementary energy conslsts of two parts: (1) The volume
integral of the strein energy, expressed in terms of the stresses,
and (2) the work of the boundary stresses over that part of the
surface over which the displacements are prescribed,

- TCC = /ffP<Ul’ 0'2’ O'c’ le’ Tlg, TQQ) av — J:/‘ E'ﬁ as (31)
edge
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The function P 18 determined by the relations

P ¥ ., P
do; - 1 o, | 2 dog = &
i (32)
OF _ <P _ OF _ :
drip TR B T By T
and, for the meterial under congideration here, is of the Fform
_ 2 2, E .2 ViE
+ & e+ g (rag® + met?) (320)

STRESS RESULTANTS AND COUPLES

Equations (9), (11), (13}, (18),~and. (19) comprise 15 equations
involving the 15 unkmown quantities Uz, Us, W; €3, €p, €t s Y105 7185 72t

01, O, Ofs T1os T1b, Tof. These gquantities here depend upon the three
independent-space variables £,, £p, and .

For the purpose of obtaining & two-dimensional theory of plates
and shells it is customary to eliminate the {-—coordinate in the
expressions involving stresses by the iIntroduction of stress resultants
and couples. Ten such quantities are conventionally defined, by the
following egquations:
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. h/2 h/2
Ny1 = 01(1 + §/R2)d.§ Noo = 0’2(1 + §/‘Rl) at

~h/2 ' ~h/2

fin/2 fin/2
Niyp = - Tl2(l + §/R2> ag Npp = Lf 712<? + Q/Rl) ag

~h/2 —h/2

h/2 . h/2
Q = -rl§<1+ §/R2) at Qp = f 72§<1+ §/Rl) at > (33)

—h/2 ~h/2
h/2 _ h/2
‘LT Mjq = 0’1(1 + c/‘-R2>§ at Moo = 02(1 + g/Rl>§ at
—h/2 —h/2
h/2 h/2
Mo = T12(1 + §/32>§ at My = TlE(l + Q/Rl)g af

-h/2 . - -h/2

-

The silgnificance of the 10 resultants and couples so defined is
suggested by the laws of mechanics, irrespective of the material of the
shell and Irrespective of the state of deformatlon of the elements of
the shell. These resultants and couples can be considered as ths
components of the vectors

Ny.= Nyg%y + Miptp + @ Ny = Npytq + Nooto + Qon
. (34)
.- - M = Mot — Myp%o My = Mppty — Moo
. 0t - Tt is evident that these vectors represent resultant force and

moment, per unit of length along the parametric curves, acting on
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goctions £, = Constant and ¢, = Constant. The couples are positive

vhen they produce positive stresses on the part of the shell or plate
on the positive side (g > 0) 2: the middle surface, The absence of a
third component in ﬁl and M, 1s due to the fact that a differential

element of area in a cross section has flnite helght h and infini-
tealmal width.

To obtain differential equations of equllibrium for the resultants,

tha eocuilibrium nnnannn (11‘ mav he gveraged over +'hn thicmess h of

Vil Oy M Ml LAl Oy Wl Vel Wl | ek diae LV OL SR

the plate or shell., Making use of equations (7) wherse necegsary, the
results are obtained in the form

SapNyg . Sxqlpy oy _ gy Sap LA _
651 + B§2 + Nyo 352 Noo Bil + Q R, + G1AoP) =

;. S
agllg e P Npy X2y, S+ QQ-"%’Z-+¢1292=0> (35)

r

N N
S, Sul% _ <-3=l- + RQLQ)“J.“Q + ajopg =

R Ry ]
where
|
oo Bl [ 68

3
i
1
o
+

Hd
iy
PN

o f”a o h)o- e Lo

~h/2

n/2 n/2 ‘
q = [<1 + R—i—) <1 *"'R%)“’-;]_:/Q + f <1 + I%)(l + i%)rg dﬁj

—~h/2
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The quantities P15 Pos and q can be consldered as the components of
a vector '

T = Pl%.l + Pty + qO (37)

representing effective exbternal force per unit area applied to the middle
surface of the plate or shell.

Two differential equatians of equilibrium for the couples are
obtained by multiplying both sides of the first two of equations (11)
by € and integrating over the thickness. It msy be noted that if the
third equation were treated in a similer way new quantities not defined
by equetions (33) would be introduced. The two equations described are
obtained In the form

-
_B_gmi_ll&_l;+3§%221+Mlegz Moo SE- — Quap — xyapmy =0
- > (38)
2 ﬁ{‘ge -
_S'g%h"' 352 +MEl'a"§"_Mlla§2_QQa‘la'2+°”lq‘2m2‘oJ
where
h/2 i
¢ ¢ h/2
e e B)e ], - | G )m e
~h/2
>(39)
h/2
h/2 t ¢
we [t - Bl |G
~hn/2

The quantities m; and mp can be considered as the components of a
vector

m = myty — mTo _ (Lo)

representing effective external moment per unit area applied to the
middle surface of the plate or shell.
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Equations (35) and (38) comprise 5 equations involving the
10 resultants and couples defined by equations (33). Two different
points of view may now be adopted.

In the first y.r..auc, the 10 quantities definsd by squations {33}
mey be considered as a complete and adequate mecroscopic description
of the statics of the plate or shell. In thils event, 1t becomes
necessary to determine which quantities serve to provide o
corresponding macroscoplc descriptlon of the state of deformation
of the plate or shell which is logically equlvalent to the foregoing
description of the state of mtress., By this is meant that in the
degoription of the state of deformation there should appear no
quantities whose values are affected by stress dlstributions for
which the 10 resultants and couples.have zero values.

In the second place, quantities may be arbitrarily chosen to
represent the state of deformativn in the plate or shell. In this
event, it may happen that the 10 resultants and moments defined by
equations (33) are not sufficient to describe the corresponding
state of stress, and additional quantities ("higher moments" of the
gtresses) may occur, together with corresponding additional equilibrium

equations complementing equations (35) and (38).

It 1s evident 'that in various theories of plates and shells,
developed along such lines, the final formmlations may differ in
congegquence of -differences 1n basic assumptions.

It is felt-that neilther of the foregoing two points of view has
heretofore been adequately taken intys account.” In thls reporta
definite formilation of the theory with reference to the first point-
of view is not obtalned. However, results are srrived at which are
belleved to be definite with reference to the second aspect of the
general problem,

CONVENTTONAL ASSUMPTIONS

It may be expected that a state of small bending and stretching
of a plate or shell 1s described in the Ffirst approximation by the
followlng formules for the dlsplacemsnt components occurring in
equations (8) and (9):

Ul(gl-’ §25 g) ul(gl: §2) + §ul‘<§1, gz)
Up(t1s f2, t) = up(ty, 82) + tup'(as B2) & (41)

WL Ba, 8) = w(t1, o)




NACA TN No. 1833 - _ 19

The components of strain are determined in terms of the five displacemsnt
varisbles wup, uy', up, up', and w by introducing equation (41) into
equation (9). Equatioms (13), (18), and (19) then serve to express the
componente of stress in terms of the displacement variables., If these
results are introduced into equations (33), the resultant 10 equations,
in addition to the 5 equilibrium equations, comprise 15 equatlons
involving the 10 resultants and couples and the 5 displacement variables,

The succese of the customary procedure depends on the use of the
following argument. An order—of—magnitude consideration of the
equilibrium equations for the stresses shows that, unless the surface
loads are highly concentrated, the transverse normal stress St is in

general of smaller order of magnitude than the stresses o; and oo,

In consequence of this fact it is conventional to neglect the term
involving o¢ in equations (14).

The third of equations (9a) shows that the assumption of equation (L41)
implies the assumption of ¢ = O. However, a theory which includes the
two hypotheses og =0 and €t = 0 would, in particular, fail to lead to
correct results in the speclal case of a flat plate subjected to a state
of homogeneous hendling and stretching, for which problem the exact
solution is easlly established. This difficulty is usually avoided by
neglecting of 1in the stress—strain relation of equation (1ka) and by
then determining €t from the resultant equation. To remove the
resultant Inconsistency, it would then be necessary to correct the
original expression for W by the addition of terms which are linsar
and quadratic in §. If no boundary layers of width of the order of
the thickness h are present, these additional terms are found to be
small in comperison with the leading term w. Thus, to obtain a first
approximation theory the additional terms may be omitted in intro-
ducing W I1nto the expressions for the strains ¢;, €,, and 710-

If the assumptions of equations (41) are introduced into the lash
two of equations (9b) there follows

o1 C, Ly ]
78 =13 §/R1<al T ag ok, Rl>
o (k2)

1

I 13w _ %
72t =T, {;/Reéz' * 85 3¢, 32>

-

It has been customary to assume further that the transverse shear
stresses T t and Ty are also of smaller magnitude than o, oy,

and Tqo. If these stresses are naglected in the stress—strain relations,
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two of equatioms (13) becoms 7y¢ = 7ot = 0. With these relations,
equations (42) determine the bending terms ujy' and uy® as functions
of uy, up, and w as follows: _ S - : o

S W), S |
T S YR |
- S (k3)
1 2
ug' =—EE-S-§;+R—2J

It may be mentloned that the assumptlons €t = 7yt = 72§ =0 at

all points are equivalent to regulring that straight lines which were
originally normal to the undeformed middle surface remain straight lines
after deformation, remain normal to the deformed middle surface, and
suffer no extension,

With these simplifications, the expressions for Q3 and Qp in
equations (33) can no longer be retained and there results a set of
13 equations involving 13 unknown quantities, uy' and up' being .
eliminated by means of equations (43).

If it 1s assumed that ot is negligibly small, there are obtained

from equations (13), (14), and (33) the following equations relating the
gtress resultants and couples to the components of strain:
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1~ —h/E
h/f2
MQQ = g 2f <€2 + V€1)<l + —§->§ d.C
1-v
~h/2
h/2
M12=G-f 7’12<L+R—c->§ at
—~h/2

(bha)

(khv)

21
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Equations (44) are listed as a basis of an outline of certain
procedures which have been used to obtain relations between the
stress resultants and couples and the displacement variables uj, up,

and w.
LOVE!'S FIRST APPROXIMATION

If the ratio ¢/R is neglected in comparison with unity in
equations (44), as well as in equations (9) which define the strain
componente, the following stress—strain relstions are obtained:

N. = —E0 € 0 + Vg 0

11 1 — 2 1 2 )

N22 = —-E—h'—2 €20 +v€lo) & (l’.5a)
Y

Njp = Npy = Garyp?

Mll = m—)-(ﬁl + VNE)

e

Moo

(45p)

3
———————512(?_ V2 (Ka + VKl)

n3
Mp =M =G337
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where

_l_ aull N u2! Bd’l r \ | (}'1'6)

a1 ok 1 \@2 a2 o

r =92 9 fus') | Ei..b.(g%:> )

and vhere uj' and up' are defined by equations (43).

The system of equations (45), (46), (43), (35), and (38) was first
given by Love (reference 4, page 531; see also reference 5) end has
been used ag the basis of many studles of specific problems with
regard to flat plates, cylindrical shells, and shells of revolution.

It 1s generally belleved that this formulation of the problem
containg all the essential facts necessary for the treatment of thin
shells, as long as special conditions do not require inclusion of the
effect of transverss shear and normal stresses,

It 1s well known that within the framework of this approximate
theory fewer boundary conditione can be satisfled than 1is expected.
Tt has been shown in earlier papers (references 1 and 2) that for flat
" plates this difficulty is resolved if transverse shear deformation is
taken into account in an appropriate way. In this report it will be
shown that the game 1g true with regard to the analysis of shells.

MODIFICATION OF LOVE'S FIRST APPROXIMATION

A number of writers (references 6, 7, 8, and 9) have modified
the foregoing first approximation by not neglecting the ratio {/R in
comparison with unity in equations (9) and (44) but still retaining the
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assumptions of-equations (41) and (43).
involving powers of h through the third are retained, and terms
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In particular, if terms

involving higher powers of h are neglected, in-equations (i),

equations (45) are replaced by the following forms (reference 9):

- 1]
0
_ _En o 0) —h2/1 _ _$
Nll_l—ve (Gl +V€2) %'ﬁli ﬁle')écl ﬁih)J
N ——Eh—((eoarve 0)—-&—]'-—4— p _620—
22 Ty y2\e 1 12\Rs " Ry /\2 7 Ry
N12=Gh7120_h2L__l.)612_223>
i 13\R; ~ Ry R /]
o
2 4
o = s~ Bl = )2 - )
] > )
3
Myq = Zh. (1 _ 1\.0
11 m[(ﬁ1+%2) B Rl
= Eh3 Ko + VK -—(—L—-l-eo
oz - 12(1—v2)[<2 ) 1)@
3 0
M12=G§'§|:T‘<l‘§§)31]
ceb3 /A 0
M21-G12[’ (i%‘z' _1‘%52]
J
In eddition to the quantities defined in equations (U46), the
gquantities Blo and 320 are defined by the equations
Bo__l_aue up dog |
1 " a3 §EI aan EEE
g (48a)




NACA TN No. 1833 25

and k1, 1is defined by the equation
(0] o
2K12=1-+’_32_+_BJ._ (48b)

It is noted that the equation
B1° + B0 = 7120 (49)

is satisfied by virtue of equations (48a) and the third of equations (46).

Tt 1s seen that equations (47) differ from equationa (45) in that
certain terms of order h3 are added to the original expressions.
However, it may be sald that the additional terms which appear in
equations (47) cannot be expected to be of the same form as terms of the
gams order of magnitude which would be Introduced if the simplifying
assumptions € =718 = 72t = ot = O were replaced by more flexible

assumptions.
It may be noted that all the additional terms in equations (47)

disappear when the principal radil of curvature of the middle surface
are equal, that is, in the cases of flat plates and spherical shells,

IOVE'S SECOND APPROXIMATION

A second approximstion, given by Iove (reference L, page 533),
introduces three types of corrections to his filrst formmlation, Tove
states that such modiflicatlons are unnecessary unless the flexural
strains §{kq, ko, and (T are large in comparison with the extensional

strains €10, 20, and 7120.

Ag a first modification, the transverse displacement W is
expressed in & more flexible form,

W, t2, 8) = w1, &) + ¥(t, t2, §)
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according to which the direct strains, given by equations (9a),
become )

€2 = 3 +l§/R2 (Ggo + Lrp + %) o (49a)

v
6§=§E

o~

The second modification consists in not completely neglecting the
ratio {/R with respect to unity but writing i__lf7§_ x1-C/R;.
+ 1. .

However, in expanding the first two of equations (49a) Iove assumes
that the quentities 2 ¢° and %% can be neglected. In this way,

R
equations (49a) are approximated in the form

o T
€l=€lo+<§—%)‘l+%

2 o~
€ = 620 + <% —-%E)Ke + ﬁ% S (Lob)
- &

The term W 18 considered as & small correction term. To obtain a
Pirst approximetion to its value, the transverse normel stress o
18 neglected in equation (19) and €1 + €p 1s replaced by its Pirst

approximation (elo + GEO) + E (v + K2>. The result then becomes

0= 3 - - i [0 ¢ ) + b+ )] (50)
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The correction W 1is then determined by integration, with the
convention '17(51, ko, O) = 0 in the form

=

)t o

If this result is introduced into the first two of equations (49b)
and quantities of the form % 0 are again neglected, there follows

€1

s (- BB o) |
- (52)

m
|

2
2 m e+ (8 - E)re — B oy S50 ") |

The third modification consists in not meglecting ot in

equations (14). In order to obtain a first approximation to the value
of op, the third of the equilibrium equations (11) is used. It is

supposed that no body force Fc is present and that the transverse

ghear stresses are negligible. Also, to this approximation the
ratios {/R can be neglected, and the equation becomes

If o7 and op are replaced by thelr first approximations and the
extensional strains are neglected, then there follows

oo
gfg "1 ﬁ va[i% ch_ *VRg) ¥ %@2 * Wl)]
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In the case of vanishing normal surface loads, Uc(gl, §2, i_%) =
Iove obtains by integration

—_l E h_Q_ 2) R1+VK2 R2+VR1 ‘
0‘; - 21 _vy2 N o < Ry + RE (53)

If the expressions for o7 and 0 obtained by introducing

equations (52) and (53) into equations (14%) are in turn introduced
into the first two of equations (33) and if again quantities of the

form %-eo are neglected, there follows finally

= 0
ty = s (a0 +veed) - %ﬁ;—ﬁg) 1
_n2 M 1w Ky + VRp  kp 4+ Ve
12 (1 - v)gg [(Rl * 32><“1 + “2) ROV TR (54)

together with an analogous expression for - Nos,

A comparison of-equations (54k) with the Pirst of equations (47) shows
that equation (54) includes the terms present in the former solution

(0]

except for the term %l— which was neglected in the present analysis.
1

More important, however, is the fact that new terms, of the same order as

the correction terms present in equation (47), are introduced in

equation (54) in comsequence of the partial inclusion of the effect of

the transverse normal stress of. Furthermore, these terms do not

venish when R; = Rp. 'Still no account has been taken of the possible
effect of the transverse shear stresses Tl§ and. T2§

The expressions obtalned, in the present procedure, for the
remaining quantities listed in equations (47), are equivalent to the

0 0
results of neglecting terms of the form %f’ %?, and %T in comperison

with the flexurel terms in equations (47). That is, no additional
terms due to the effect of cg are introduced into the remaining

quantities by this procedure. -
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Tt may be montioned that the results of the developments of this
section reduce to those presented 1n Tovels treatise in the isotropic
cage VC =V, Eg = B, which is the only case treated there.

BASSET'S THEORY

In this section there is outlined an analysis glven by Basset
(reference 10) which, in the opinion of the present authors, has not
recelved as much attention as 1t deserves, The reason for this may
perhaps be found in the fact that Basset's work is difficult to read
and that the notation employed is somewhat complicated and, from
modern standards, somewhat unsystematic.

Basset begline hls analysis with the assumption that the stress,
gtrain, and displacement components in a shell can be expanded in
series of powers of . Thus there may be written, for example,

lul(gls ) C) ='u1(§1, §g> + Qul'(él, 52) + %‘Ceul"(él, §2>-+ « .. (55)
where

ul(él, §2> = U1(§1, g2, 0) ]

\ < (56)
w1’ (&1, t2) = a—gl] o

end so forth.

The derivetion is based on the use of the principle of minimm
potential energy (equations (25) to (28)). The strain-energy function P,
as glven by equation (27), is expanded in powers of € so that the first
terms are of the form

P2 — 2
P= %{i———%g E[(el + 6eyt + % t2eqtt + . . ) + (Gg + Leot!

R .)2]+ b (57)
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deq(&1, 5,0
where ¢7 is written for sl(gl, P O); €', for l( 1g§ 22 ); and

go forth, Only such terms are retained as will lead to terms of

order h3 or lower after the {—integration of equation (25b) 1s
carried out, terms involving the basic quantities wu;, up, and w being

considered as of zero order in &,

To express the primed quantities in terms of unprimed quantities,
use ls made of the straln—displacement relations of equations {9b), the
lagt two of which can be written in the form

oUy _ 1 W Uy
ST T T @+ C/Ry) ok TR+ C
| . (58)
Y Yot — 1 w_,_Y '
ot ¢ ap(l + {/Rp) otz R + §
Thus, setting € = 0, there follows
1 N
- (59}
t -1 9w for]
2 728 ] 352 * Ro ]

In this way the quantities wuj' and up' are expressed in terms of the
displacement functions wuj, up, and w on the middle surface and in
terms of the transverse shearing strains on the middle surface. The
third of equations (9a) gives the result

w! = eg_ (60&)

This result can be expressed in a different form if equation (19) is
uged to express eg in terms of €5, €5, and o as followa:

o
i LR R (6

By further {-differentiation, all other primed quantities can be
expressed in terms of the values of uy, uy, W, and (e; +-€2) on the
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middle surface; such expressions also involve the values of 71ts 7ot
and op and their § ~derivatives on the middle surface. The remaining

three stress—strain relations of equations (9) then permit the
determination of the coefficlents in the power—series expansions of
the strains ¢j, ¢p, and 7o 1in terms of the same quantities.

It is then assumed that in the expansion
op (b1, B2, &) = op (b1, 82) + Log' (B, B2) + 5 t20p™ (81, o) + . . .

the leading term is at least of order h2 ‘and the coefficient of ¢§

is at least of order h. Next it is pointed out that the leaeding

terms in the expressions for the couples M, My,, M, and My

are at least of order h3. On the basis of this fact it is stated
that, if the external moments m; and my are absent, the equilibrium
‘equations (38) imply that the transverse shear resultents Q; and Qp
mst be at least of order h3 and hence that the terms of lowest

order in the transverse shearing strains 71¢ and 7ot mist be at
least quadratic functions of h and ¥ since such functions when
integrated over a sectlon glive rise to gquantities of order h3,

The fact may be pointed out here that this argument mey break
down 1n those cases where an apprecliaeble change in the magnitude of
a couple may occur.over a dlstance of the order of magnitude of the
thickness h of the plate or shell or over a distance of order VEE,
where & 1s a representative dimension of the shell, For if such a
chenge takes place over & distance 1 in the §l—direction it follows

that %g— is of the order % M in the reglon considered. It is well
1

known that for plates 1 may be of order h, while for cylindrical and

spherical shells the distance may be of order Qah, where a 1s the
radius of the circles of curvature, in problems of usual occurrence.

If such cases are excluded, 1t is found that the contributions
of 7¢ and 7t to the strain—emergy function of equation (57) give

rise to terms of order B2 or higher and hence the transverse shear
effect may be neglected if only terms of order h3 are to be retained.

With the assumptions noted, the variational equation (28) leads to
expressions for the stress resultants and couples which include all
third—order corrections to Love's first approximation, equations (45),
which are consistent with the assumed order—of—-magnitude relations
involving 71¢, 7ok, and of. In particular, the corrections introduced

by equations (L47) are included, as well as the additional corrections
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introduced by Iove's second approximation, and the remaining third—
order corrections which are sbsent in the latter approximation are

introduced.

Basset's analysis was carried out only for isotropic circular
cylindrical and spherical shells but could equally well be adapted to
the more general theory.

TREFFTZ' THEORY

An alternste system of equations for small deflections of isotropic
gshells has been derived by E, Trefftz (reference 11) by means of the
minimm principle for the stresses. Trefftz begins by writing

-

o1 = clo + toyt

op = 020 + Loyt S (61)

12 = T1p0 + tT1p' |

where the functions co and o' are expressed In terms of resultents
and couples by means of equations (33)., Equations (61) are introduced
into expressions (30) and (32) for the complementery emergy, in which

all terms containing Ots Tigs and Tpt are omitted.

The resultant—expression for the complementary energy expressed in
terms of the N's and M's is minimized subject to the restrictlions
imposed by the five equilibrium equations (35) and (38). The equilibrium
equations are teken into account by means of the Lagrangian mmltipller
method, the multipliers being identifled with appropriate displacement

components.

When terms of order /R are neglected, Trefftz' results agree
with Love's first approximation as given by equations (L45) and (46),
When terms with §/R are retalined & new system of equations is obltained.

With regard to this set of equations, however, the following point
may be made. TFor certain exact solutions for circular rings it is found
that, a8 h/R increases, the linear displacement expressione corre—
gponding to equations (41) are mich more nearly correct than the linear
stress expressions correspcnding to equations (61). It is noted,
however, that this distinction disappears for the special case of the
flat plate.
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The effect of transverse shear and normal stress in shell theory
might be taken into account by calculating by measns of the three—
dimensional equatlons of equilibrivm (ll) the values of the stresses UC’
TlC’ and 'r2§ which correspond to the values of Oys Tps and Tip @8

given by equations (61).

It appears that this procedure would lead to rather complicated
expressions for cg, TyE> and Top when Rl and RE are finite, A

class of nonhomogeneous shells for which this complication can be avoided
has been studled in reference 12.

In earlier papers (references 1 and 2) one of the present
authors has treated the problem of the flat plate in this manner and
has thereby established the importance of the role which is played by
the deformations caused by the stresses of, T1¢, and To¢ 1in certain

problems of plate theory. It may be remarked that the use of the
particular minimim principle employed in that reference is not essential
to the analysls of the effects of transverse stresses. Similar results
can be obtained 1n & number of ways, for example, as is shown in & later
section of this report, by use of the minimm principle for the
displacements.

It may be added that the system of equations obtained by the
application of the minimum principle for the stresses in the manner
Just outlined, while furnishing approximastions for the stresses
themselves, determines certain weighted averages (taken over the
thickness) of the displacements, rather then the displacements themselves.
This is shown in reference 2 with regard to flat plates. It will be
shown in the present report that Just the reverse is true when the
minimm principle for the displacements is uged to obtaln a system of
two-dimensional equations for the theory of shells.

THEORY OF SYNGE AND CHIEN

A theory of the finite deflections of 1lsotropic shells has been
developed in a series of recent papers by J. L. Synge (reference 13)
and W. C. Chien (references 13 and 14). The basis of this theory,
which is of great generallity, appears in the case of small deflections
to reduce to the following considerations.

All stresses and displacements are expressed as power serles
in £ and the equilibrium equations and stress—strain relations are
written accordingly as equalities between power series in . By
equating the coefficients of respective powers of § in each of these
equations, an infinite system of simultaneous differential equations
in the independent variables &7 and &, i1s obtained. .
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Next a representative length & on the middle surface of the shell
is introduced and each coefficient of each power series in € is
coneidered to be developed in powers of the ratio 7 = h/a. Various
choices of the lowest exponent (which maey be negative) of 1 are made,
guch choices leading to different formulations of shell theory.

Finally, only the leading terms of the respective developments are
retained.

The fact must be stressed that this interpretation of the Synge—
Chien procedure 1s tentative and that a more detalled explanation of
this work 1n terms of the notions of the present report is believed to
be desirable., It may be remarked that the formmlation of boundary
conditions appropriate to the various theories evolved by this procedure
does not appear to be incorporated in the work of Synge and Chien.

INCORPORATION OF TRANSVERSE SHEAR AND NORMAL STRESS EFFECTS
WITHOUT USE OF A MINIMUM PRINCIPLE
In thie gection there 1s outlined a possible extension of the
clagsical general methods which takes into account a first approximation
to the effects of transverse shear and normal stresses.

Agein there are assumed for the displacements the expressions

ul(gl, ;-.2) + §u1'<§l, £o) )

up(ty, Ep) + Eup' (81, £s) ” (62)

U1 (815 25 8)

Ua(tys tos &)

W<§l.’ €, §) = w(gl: §2)

It is not, however, assumed that the transverse shear strains are
negligible. Thus equations (43) no longer hold. In their place

now there are the definitions of Q and Qo as given in equations (33).

To a first approximation these equations take the form
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h/2 7
@ =G 71t at
-h/2
63)
no } (63
P =G 72t ab
—h/2

vhere the factors 1 + {/R are replaced by unity. With the same
approximations, expressions for 71f{ and 7o &are obtained from
equations (9b) in the form

71t = é?’éf’ ﬁl gt _

L (64)
72t = g5 %E‘ %g +upt

J

Thus, in place of equations (33) now there are the relations

> (65)

The next step consists in introducing the values of ¢, €4,
and Ty, which correspond to equations (1) into the first of

equations (13) and into equations (14k), to determine corresponding
expressions for o, Op, and 7y, &and Iin then substituting the results

into equations (33), to determine corresponding expressions for the
stress resultants and couples. In doing this, egain the factors 1 + Q/R
are replaced by unity in calculating terms which are in addition to
those which appeer in equations (47). If the right—hand members of

equations (47) are denoted by Nllo, Néeo, and so forth and the parameter



which appears in equations
equations take the form

N2

Mo =

Mxy
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A < | (66)
(1 -V)Eg

(15) and (16) is used, the resultant

h/2
N10 + V*u[] 'ag at

~h/2

-

h/2
of at

]
mz
n

O
+
<

*

r (672)

Mllo + y¥* Ugg at

h/2
= M,.0 + v*(/‘ ot at r (67b)
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Equations (67) and (63), together with the 5 equilibrium equations (35)
and (38), comprise 15 equations, involving e total of 17 unknown quantities,
namely: 10 stress resultanis and couples, the 2 integrals involving ot
in equations (67), and the 5 displacement variables of equations (62).

Two .additional equations may be obtained by requiring that the
results of integrating equation (19), and the product of € and the
two members of equetion (19), be satisfied. Since the third assumption
of equations (62) implies the vanishing of the transverse direct
gtrain ¢€¢, these equations teke the form

h/2 h/2
ot i = v*E -E]:LS- (el + 62) ag
~h/2 ~h/2
. e (68)
h/2 h/2 _
ogl at = v*E EEQ (el + 62>C at
~h/2 -h/2 J

Equations (67), (68), and (63) serve to determine the conventional
10 stress resultants and couples, as well as the 2 auxilisry resultants,
in terms of the 5 displacement functions. The introduction of these
results into the five equilibrium equations (35) and (38) then leads
to a get of five differentlal equations in the five displacement
functions. The solution of the given set of eguations l1s then epparently
determinate if these flve functlons are prescribed along the boundary of
the plate or shell. Alternatively, it may be expected that along an

edge & = Constant the five quantities Nyis Mooy Myq, Mo, and @

may be independently prescribed, as staticel considerations would
require. If this is indeed the case the classical difficulties first
investigated by Xirchoff would be resolved.

A new difficulty may, however, be noted. In the special case of
pure bending of & flat plate, by couples distributed uniformly along
the boundary, the known exact solution is derived from equations (67b)
only if the corrsctive terms involving ot ere abgent, that 1s,

1f Mpp = M0 and Mpp = My0.  But if equations (68) are to be

setisfied it is readily verified that the corrective terms will be
absent only in the special case when the prescribed uniform edge
couples satisfy the relation My + Mpo = O. The presence of this
difficulty may be explained as follows., The assumption W = w 51, 52)

implies the assumption €¢ = O, and hence (if the relevent stress—
gtrain relation is retained) there follows also
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0'§ = VC (O’l + 0’2)

Thus a transverse normal stress effect is automatically introduced,
in this formmlation, In commection with effects due to the
gtress 09 + 0p. This coupling i1s avoided in the clagsical theory by

dlsregarding the third stress—strain relation and taking op =0

identically, even though this in gemeral contradicts the
assunmption € = O which is also part of the classical theory. A

similar procedure might be adopted here, wherein equations (68) would
be disregarded and an expression for cg such as that used by Love

(equation (53)) in his second approximstion would be uged. The validity
of such a procedure would, however, be open to question,

It is clear that the difficulty is not present in the special
orthotropic case when ve 1s negligibly small,

A gecond posslble procedure consists in replacing the
assumption gg = 0 by a more general type of agsumption under which €¢

and o¢ are not ao restricted. In this connection, however, it may

be remarked that—if the assumptions of equations (62) were replaced
by more flexible assumptions, in which more than flive dlsplacement
functions were involved, the present procedure would not supply in a
rational way the additional relations needed for the determination of
the additional functions.

To clarify the entire situation and, in particular, to investigate
in & rational way the manner 1n which boundary conditions may be
imposed, the formmlation of the problem 1s considered next from the
point of view of the princliple of minimum potential energy.

APPLICATION OF THE FRINCIFLE OF MINIMUM POTENTTAT ENERGY

In place of the assumptions of equations (62), here the following
more flexible forms are taken:

Uy (81, f2 £) = wa(B1, B2) + bupt(BLs 82) + 3 EPwy (b, 52>‘]

Up (81, b2, ¢) up(t1, Ep ) + Cup* (81, £5) +%§2u2n(c-.l, £, )  (69)

w<§l: £, C) = w(§l, 52)'"’ Ewt (gl—' §2> + % §2w"<§1, EE’)
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and a system of equations determining the nine displacement functions
present is derived by an application of the principle of minimum
potential energy (equations (25) to (28)).

A shell is considered whose boundery edges lie in coordinate
surfaces &7 = Constant and &, = Constant, and there is first

calculated the potential emnergy =; assoclated with the load system.
According to equations (25a),

_.J’, [(P1+U1 * Pailoy + My >(1 * 2Rl><l i -2?5)

* (Pl PV Lw-)é t- ‘2%_2 o 8 k)
h/2 ]
- ("nUn + ToeUp + Tn§W> (l + i%) af |ay db g
—h/2 ]
= Wy, + T (70)

The first (double) integral wn,y represents the energy associated with
the surface loads Prys Poys and a, acting on the gurface { = % and
the surface loads P, s Py end g acting on the surface { = — %.

The sbbreviations - '

Uy = U1<§1: ta, + %) U= U1<51: t, - %)

and so forth have been introduced. The second integral =x;, in

equation (70) represents the energy associated with the edge stresses.
Here the subscripte n and +t refer to the normal and tangential
directions on the boundary faces; thus, on & face §l Constant,

n=l,t=2.

If the assumptions of equations (69) are intraduced into the
expression for =, the coefficlents of the displacement functions
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are fournd to involve quantities which may be denoted as Ffollowa:

b oD b b —_h_
Py 2R)<l+ )*Pl-l 2R1><1 i

s
e ) )R- )
o)) A

il ) ) b))
my %[p2+ (l + ET)(I +- ——) - p2_<l ( - 5%—2— y v (71b)
B )+ ) - - )

With these abbreviastions, there follows

Mg = —ff(plul +Dplp + QW + Uy + moup' + nw!
+ 18‘ heplul“ + % h2p2u2“ +18= hzqw">cr,lcx.2 ag; dbp (72)

where the integration 1s taken over the area of the middle surface of
the plate or shell,

Tf the assumptions of equation (69) are introduced into the
expression for my, and if the {~integration is carried out, the

coefficients of the displacement functions involve quantities which may
be denoted as Follows:



2
(h/2 b/ Nh/2 ;
- U-n/2 Un(l ) L) * e ~h /2 Tnt(l ' g) * w U-n/2 'rng(l ' é) " f
in/e g n/2 n/2 ; ]
Mm = %G+ﬁ¥£ Mp = Tm@+%¥ﬁ Sp = Tﬁ@+myaﬁﬂn)
J-n/e oy U-nfe
h/f2 n/e h/2
P, = % Un(l N ég)gQ at Byg = % Tnt(l .;.ﬁ%)ga at Ty = -;; Tng(l + ,R%;.)Qedg
~h/2 —n/2 ~h/2 |

Of the 18 "resultants" so defined, corresponding to edges £ = Constant end £, = Constant, it is

seen that 10 are the famillar stress resultants and couples of equations (33) » While the remaining
8 quantities are new,

With the notation of equations (73), there follows

Ty = — f ('ﬁmu.,:1 + Mgpun + gt + Fnt% + Mopug' + Bpgug' + Qg + Spw' + an")a.t aty,  (7h)

where the line integrel is taken along the coordinate curves which form the complete boundery of the
middle surface. The fact that edge values of the resultants are involved in equations (T4) is
indicated by the use of bars, '

i

T
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The internel energy mgipgin 18 &iven by the volume integral

h/2 _ . -
Tgtrain = f - Pagap (1 +~1§—l>(l +%> af | aky at, (75)
—h /2

where P represents the strain energy per unit-volume and is defined by

equation (27). Thus, the variational principle of equation (28) is of the
form

Brtgtpain + Bmyy + Bmye = O (76)
where -
h/2
Bngtrain = (81>)a1a,2<1 +41%><1 + %) ab) aé, &b, (77)
~h/2 :

If-use ig made of equations (26)

, the expression for B8P can be
put in the form . - .

oP_ oP oP
8 L ] L] Ll
8P = Se € +— Se Bep +- + et 8728

0186 + 0pBep +—0€5€€ + T108710 + T1EDY1 L + Toldrot (78)

where the stress and strain components are to be considered as functions
of the nine displacement functions appearing in equations (69).

First there is calculated the contribution of the first term clsel

to the variation Bmgipgin. I1f the assumptions of-equations (69) are
introduced into the first of equations (9&), there is obtained
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duy, , duy duy

s Tap(l+ §/Rl)[<5§1 + 6 agJ.

+ %(w + Ewt + % CQW")J

J.§2

Thus, the result of replacing B8P by 07%€; in the right—hand member of
equation (77) is of the form

odu oBu,!? odu, 1
— —1 Ll A
ﬁ "ll““F') (agl Ot b ey )
~-h/2

T ag (?mg + CSug + &= §25u2") + la'e(Sw + ot
2

+ %" §25'W"> dC dgl dga

If the {—integration is carried out and the notation of equations (73) is
introduced, this expression takes the form

2

OBuy 't 8@1 ajap
+ Pl<1‘2 agl 852 5'!.12" + —Rl_ Swtt dgl dgg

where the integration is taken over the middle surface of the plate or ,
shell.

The contributions of the remaining terms in equation (78) to the
. value of Sﬁstra.in can be calculsted in a similar way. In calculating

, the contribution of the term 7128712 it 1s convenient to mske use of
the identities of equations (7).
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The contribution of the term opdey involves two new "resultants,"

not defined by equations (73), for which the following notations are
adopted:

/2 . | h
A= cg(# +3§i>614-é2> at
~h/2
- (19)
h/2
B = cg(@ + %i)(} +~%§)§ at
—h/2

In the resultant expression for Sﬂstrain the terms involving

derivatives of the Iindependent variations may be integrated by parts,
thie procedure leading to an equivalent expression for Bngtypain
congigting of the sum off-a line integrel taken around the boundary of the

middle surface and a new double integral involving the independent
varlations in a linear way.

Detalls of the calculation are omitted, and only the form is
presented that 1s assumed by equation (76) when the separate integrals
are combined and the coefficients of the independent—variations are
collected:
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N1y | da3Npy S Sap
ff{ngl * 3 e 352 “N2F ta -r + Qgdopy | Bug

. 50!.21‘712 Saq Moo + Npy _2%2_ - Nqq Sy + Qo A2 oclcogpg:l Bup
1

a§l 552 1 Ro
[apq <
e a§2 R/ + dvee oV

BG’QM Saualoy dap _%_ _
' _agl tRE T MR, T e 3y, T e O‘10‘21'11_5‘11'

[daplyp | doyp ?“_2 _ '

f—aa.gs daq S
2 _ (M Mee
+ __Bg_ll + _a..;-;_ (Rl )oola.2 Aorqan + mlaen]ﬁw*

20pPyy | duyBy S ﬁ_( E%)
e TR TR E, TR, T\t TRy

1 1w, |%%eP1p | SaaPpp L Sap 1
+ 3 ala.ethJ;lSul + [ agl Sta PEI Bﬁl Pll 852

T [BasT;  SaqT
~ (82 +R§ 192 +%@1d2h2P2]5u2" + 'a—;eal+§§f'

<§§:—_’L P22>C“la'2 Baqap + l d’ld'zha ] Bw!! o dE4 do
+ f{@m - Nnn)aun + (ﬁn’c - Nnt)aut * (@n - Qn)&w
+ (i o+ (s = o + (5 )

+ (an = sz)sun" "'_(P_nt - Pn'b)au'b" + (T.n - n)aw” ay 4

= 0 (€0)
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Since the variations appearing in this equation are entirely
arbltrary in the interior of the middle surface, the coefficlents of
the nine variations in the double integral must each vanish identically.
In this way nine differential equations are obtzined, the first five of
vhich are the conventionsl equilibrium equetions (355 and (38), except
for the interpretation of the loading terms, and the last four of which
are new., These additional equations correspond to the introduction of
the four new displecement functions w', w', u;*, and us't.

The corresponding nine boundary conditions to be prescribed along
the edges of the plate or shell are obtainad as a congequence of-the
independent vanishing of the nine terms in the line Integral of
equations (80)., Thus, along a boundary &7 = Constant, the first term

of the line integral becomes <ﬁ11 - Nll>8ul. The vanishing of this term
is assured if the displacement wuy = Uy(E1, Ep, O) is prescribed along
this boundary, since then Buj = 0. Alternatively, the term will vanish
if the resultent N3 1s required to teke on a prescribed value Njq

along this boundary. Considering the other terms in the same way, it is
seen that the following nine boundery conditions along & boundary gl =C
are consistent with the displacement assumptions of equations (69):

Ny = Npq or u = U1(C, ko, O) prescribed
Nip = Nyp or us = Up(C, &p, O) prescribed
G = § or v = W(C, &5, 0) prescribed
~(81a)
- U, (C 0 '
My = Mgy or up' = 2 5 ;2’ ) prescribed
Mo = Myp or up! = BUQ(C,gEg, 0) prescribed
a o
— W (©, tp, O ]
Sy =8 - or w! = (gé 2 0) preacribed
- %W (C 0
Ty = Ty or wit = (©, ZE’ ) prescribed
3¢ ~(81b)
P;1 = 511 or wy' = BEUi(nggg, 0) prescribed
- 32U, (C, tp, O
Pio = P1o or us" = 2( ggQE’ ) prescribed




S
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In particular, it is seen that If w' = w'' = u3'" = ut't =0
everywhere, and hence equations (69) are specislized to the classical
assumptions of equations (L41), the five boundary conditions which remain
are those of equations (8la). Thus, for example, at a free edge of a
plate the twisting couple Mo and the shearing force Q; can be
required to vanlish independently. Thess results are in contrast with
the corresponding situation in the classical theory, where Kirchoff

first showsd that for a flat plate the physically desirable
conditions Myp = @ = 0 at a free edge cannot both be satisfied but

Me
3,
Basset, Lamb, and others have since shown that in the classical theory
the resultants Njp, Mjpo, and Q1 cannot in general be separately
prescribed along an edge of & shell. (See reference 4, pp. 536 and 537.)

that they must be replaced by the single condition Q; +

The next step 1n the analysis consists in expressing the resultants
of equations (73) and (79) in terms of the nine displacement functions.,
The expressions for the relevant stress components are obtained by first
introducting equations (69) into equations (9) to determine the strain
components and then substituting those results lunto the stress—strain
relations of equations (13) and (18). The remainder of the analysis
consists basicelly in iIntroducing the expressions for the resultants
into the equations obtained by setting the nine bracketed expressions
in equation (80) equal to zero and so obtaining nine differential
equations in the nine displacement functlons. In practice, however,
the latter part of the analysis may frequently be carried out more
conveniently in terms of some other appropriate set of nine independent
guantities.

Explicit expressions for the "auxiliary resultants” A and B
of equations (79), which do not enter into the boundary conditions, may
be listed as follows:

~
A=V§<N11+N22 ﬁl—l %>+E§h[l+lQRR2)w'+h—-l- Re> ":l
3 - L(82)
2
B=v§<Mll+MQQ+%+%’2—>"'Eghﬁ[(i%"'ﬁlg)w‘"'(l"'g_g%—lE)w“:l

-

In obtaining these expressions, use was made of the third of
equations (12) to express Ug in terms of (Ul + co) end €g-
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By introducing equations (69) into equations (9) expressions are
obtained for. the strain components vwhich may be written in the form

6 = -Jj_lﬁ]—-elo + Lyt + % §2€1n)

eeo + Leot + % g2€2n)

w' 4 Lwnt

ct

712 (Bl + Bt + = _5251">

1+§/Rl +C/R2

1 0 t 1.2 n)
Y = —— + \! 4 = v
18 1+ 6/Ry 1 qol Al

Yot = T +l§ 2(,_120 + gpet + % g2u21|)

where the relevant functions are defined by the equations

o _ ou up S
L '?ﬂ%l'al“LdltreEEé"Lﬁ

(120 + tot + L t2apn)f" (89

(8ka)
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1 1
ppr =L Jwal_ wm' S (84D)

1t - — ”

P1 a1 Jdf1 % dfp
0 _ 1 ow _12 ]

b1 = éi <131 ﬁi + Ut

upt = L Qul | oy S (8ke)
1 a] Bél 1 ¢

and by the additional equations obtained by permuting the subscripts 1
and 2 in equations (84).

The calculation of the resultants involves integrals for which
there are introduced the following notations
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h/2 . 2
f Lt d§=%§[1 ~( % 3o al‘] - (85)

together with the analogous expresslions obtained by permutation of
subscripts. The perameters introduced in equations (85) possess the
following expansions 1n powers of h:

¥ %(%-)67 ce. (86)

o
H-‘
n
|
+
=3\
AT
B
&
v
+
\O\n
TN
ER
)
S’
4
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With the motation of equations (84) and (86), the expressions for
the resultants defined by equations (73) can be written as follows:

N1 =

1 = 2 {[(l -ve)elo + (v +T,2)€20 + Vg(l + v)wf]

2 11
+ 121—4[(1 - Ve)el" + v+ V2)62" + 2ve (1 + v)%z—]

2 0/1° g '
G- B Pl - i ]

Nip = Gh {(Blo + B0) + (Bl" + Ba') + (— - 3%)—[11 (—l— - Bl>

= 3 w!
Mll = 1-2—(§g——_‘12—5{[(l - ‘\72)51' + (V + v2)€2' + V; (l + V)(W" + R—2>‘:|

3 2 By’
= %—{(Bll + BE') _ <1_\Z)L_l _ 'RLQ I:a'lOBlo _ _23%_ alt(ﬁi::__ _ % B]_">:|

2
= o -h—2 tr i N i - 1 3h
G = & {“1 Top T <R1 12[ "1/ ¥ LoRy

2  (872)
* igRl al'Bl"]}

51
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—

1
Ggh3 o , 3n< 1 1\3h° by 0
T = e—r—— Tt —_— — ——— t _.L —_ 4
T2 M e M (Rl 122)20 g, M
+ Qﬁ"alu ) Tt
5631 '

Pll = ———jh-s-——-— [:(l - 72)610 +---(V + Ve)ego + vg (1 + V)w']
24 (1 —~ v2) : - ' - > (87¢)
5 . _ . ! .
+ %%—l@l —-V2)€l" + (v + Ve)ee" + 2V§(l + V)gzl]
2 0 2
G RE P o) 2 e

3 0 0\ . 38°/s 1 3h2 8,0
P1o = &2 9(1° +-82°) + Z-(rn 4 pem) + & - &) (3 - a

The expressions for the nine remaining resultants are obtained by
permutation of subscripts,

The results listed in equations (87a) reduce to those of equations (47)
1If w' =ug" = up' =w' =0, iIf uy' and up! are determined from
equations (43), iIf V¢ = O, and then if terms involving powers of h
greater than three are neglected.

In this commection it is useful to write the expressions
for. Njj;, My;, and P37 in the following dlternative forms:
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-

Nyq = I—%h;g {(elo + V€20> + %2;(51” + Veg")

-RERE-o)

+ y* %*_((wi + %2_2%> + {(l + € 0) E%E(eln -+ €t

1 _ 1\3h2 rﬂﬁ-et) 5he 11 1t
T Ry Rg>20 1 \Ry 1) * 56y *1- “

23

, (88)
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where

VCE
Y = —2
(1 —v)mg
. (89)
% - (1 - vo)Ee

- *
1 EVQV

The coefficients of v* in equations (88) represent the
contributions of-the transverse normal stress o and are zero

wvhen O vanishes. In accordance with the remarks made in the

preceding section, it 1s evident that if the effects of the transverse

normal stress are to be teken Into account in e ressonably accurate

vay, the terms w' and w'' must not be excluded, in general, unless .o
the orthotrophy is such that Ve is negligibly small, .

It appears, however, that the contributions of the terms wu;'! -
and 1un'!' are in general of small importance, In fact, it is seen .
that these terms appear principally in combinations of the
form ulo + %E uy'' and u20 + gi_
the averege values of the assumed displacements Uy and Us over the
thickness. Thus, it appears thatneglect of the terms uy'' and up"!
can be largely compenseted by interpreting the terms u;0 and wuy©
as average values rather than as values assumed at the middle surfece.

The equations herelin listed afford the basis of a more detailed
investigation of the importance of the terms wuy'' and ups''.

us'*, such combinations repfesenting

If these termse are neglected there remsin seven displacement
functions end, consequently, seven boundary conditions are to be
gatisfied along an edge of the plate or shell. Thus two conditions
in addition to the ususl five condltionas suggested by statics are to
be imposed. In particular, if the boundary conditions involve the
stresses, the two additionsl conditions prescribe the Integrated first
and gecond moments S and T of the edge transverse shearing stresses,
in addition to the transverse shear resultant Q. If the terms wuy"
and up!' are also retalned, the secondi moments of the edge normal and
ghear stresses in the direction of the mliddle surface are glac to be
prescribed. ) .

It is of some interest to investigate in what way the number of
boundary conditions is reduced when the effect of transverse sdhear is -
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neglected by taking G¢ = w. Reference to equations (87) then shows that

in order that the resultants Q, S, and T remain finlte there must be
taken

ulo =pt =" =0 (90)

end hence, in accordance with equations (84c), there must follow

u_":u __J._éw '(.12'=l-:—2"—‘l'ﬁ—
is Ry QA c_g,l = 2 @ a§2
’ (91a)
1w _ _ 1 ow' 1w o _ 1 ow!
"1 93 3&; Y2 %2 3k, )
and also
L owt _ow't _ 1 ow' _ oW _ g (91b)

t
R; 3f; 3 Ro ok,  db;

The nature of the relevant boundary conditions is determined by
congidering the form assumed by the varietion of the expression T1e

which represents the energy associated with the edge loads. If use
is made of equations (74) and (9la), this variation becomes

+ Npgdug + T"'ﬂt(ﬁi‘ Buyg — & B _c'x.Lt—nt Qbv

+ Qv + Sowt + Tﬁ&r"] ap Ay
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The terms involving btangential differemnitlatlon can be integrated by
parts to glve the result - _ . -

{2
5. .1 M + A OFnp
+ ( 4-Qt Sts >8w + G%l %t SEg ‘>8w
- ?% f_m-_la %i‘ + Tnﬁw"] ot déy (92)

By considering the resulis of the application of the principle of
minimm potential energy, it 1s concluded that either the quantities
vwhose varistions appear in equation (92) must be prescribed or the
quantities which appear as thelr coefficients must be prescribed edge
values of relevant resultants, Thus, in particular, if tranasverse
shear effects are neglected, the three resultants Q, N ., and M4

cannot in general be separately prescribed at a boundary, but only
"effective" shear resultants of the form

'ﬁnt=nnt-+§’f

5 4 (93)
% = 1 Mt
%= %t ag S, )

can be specified. This result is in accordance with known facts first
established by Kirchoff for the flat plate and by Basset (reference 10)
for the circular cylindrical and spherical ghell,

CONCLUDING REMARKS

From a survey of various systems of egquations given in the literature
for the analysis of small deflections of thin elastic shells, it appears
that the question concerning the best form of the basic system of
equations of shell theory hes not yet been declded, even 1n the small-—
deflection theory.
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The present authors believe that thelr approach by way of the
principle of minimum potential energy represents definite progress
for the following reasons: (1) It is now poesible to have a succession
of two—dimensional theories of vaerylng degrees of exactness, depending
on the number of terms which are retained in the series of the
displacement components and (2) the equations which are obtained include
the possibility of analyzing boundery-layer effects not only when the

boundary layer is of order VRk but also when the boundary layer is of
order h, where R 1is the radius of curvature and h is the thickness.

Massachusetts Tmnstitute of Technology
Cambridge, Mass., June 23, 1947
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